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Multi-threaded Performance and Scalability

Dr Heinz Kabutz

Brief Biography
– From Cape Town, now lives on an island in Greece

– PhD Computer Science from University of Cape Town

– The Java Specialists' Newsletter

– Java programmer

– Java Champion since 2005
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Multi-threaded Performance and Scalability

Threads Help Utilize Our Hardware

Do something else whilst waiting for IO
– e.g. blocking IO, progress bars, etc.

Split a problem into smaller chunks and solve together
– e.g. fork/join
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Let's Go Fast Fast Fast

 In 2000, Intel predicted 10GHz chips on desktop by 2011
– http://www.zdnet.com/news/taking-chips-to-10ghz-and-beyond/96055
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Let's Go Fast Fast Fast

Core i7 990x hit the market early 2011
– 3.46GHz clock stretching up to 3.73 GHz in turbo mode

– 6 processing cores

– Running in parallel, we get 22GHz of processing power!
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Let's Go Fast Fast Fast

 Japanese 'K' Computer June 2011
– 8.2 petaFLOPS

• 8 200 000 000 000 000 floating point
operations per second

• Intel 8087 was 30 000 FLOPS, 273 billion
 times slower

– 548,352 cores from 68,544 2GHz 8-Core 
SPARC64 VIIIfx processors

10
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Which Is Faster, "K" Or One Simple Intel "i7"

 Intel i7 has a total speed of 3.73GHz x 6 = 22 GHz

K has a total speed of 2GHz x 548352 = 1096704 GHz

Which is faster?
– If we can parallelize our algorithm, then K is 50,000 times faster

– But if it has to run in serial, then one Intel i7 is almost twice as fast
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Thinking About Performance

We want to utilize all our CPUs with application code
– Overly coarse-grained locking means the CPUs are starved for work

• Took 51 seconds to complete

– Too fine-grained locking means we are busy with system code
• Took 745 seconds to complete
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Thinking About Performance

Busy CPUs by using local data and merging results
– Took 28 seconds to complete
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Performance Vs Scalability

We can measure application performance in many ways
– Latency: How fast one unit of work runs

– Throughput: How many units of work can be done per unit of time

A system is scalable when the throughput increases with 
more computing resources such as CPUs or faster IO
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How Fast Vs How Much

 In traditional performance optimizations, we try to make 
our code run faster
– e.g. cache old results, improve complexity of algorithm
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How Fast Vs How Much

When we tune for scalability, we want to parallelize work
– Thus by adding more CPUs, we can complete more work
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How Fast Vs How Much

Many code tricks that make code run faster also make it 
less scalable
– For example, maintaining previous results adds synchronization
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2-Tier Vs Multi-tier System

Old 2-tier systems
– Rich client connected to database

– Typically low latency

– Only two layers

– Not scalable to millions of users
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2-Tier Vs Multi-tier System

Multi-tier systems can scale
– Overall latency might be worse than with 2-tier

– But throughput is much better

– Can scale to millions of users
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2-Tier Vs Multi-tier System

Every system you build should also work in a cluster
– Don't leave "clustering" as an optional extra for the end
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Evaluating Performance Tradeoffs

Always find out the performance requirements
– Are the requirements low latency?

• What is the maximum wait time for your clients?

– Or high throughput?
• How many clients do you want to support at the same time?
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Amdahl's And Little's Laws

Performance and Scalability
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Amdahl's Law

Some problems can be solved faster by parallelizing 
portions of it
– N = number of cores

– F = serial portion

23

Speedup ≤ 1

F + (1 - F)
N
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Watermelons

More workers (N) can plant watermelons faster and 
harvest them faster

But no amount of additional workers can make them grow 
any faster (F)
– The growing is our serial section
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Utilization According To Amdahl

Even with a small section needing to run in serial, we are 
limited to how we can speed up our program
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Problems With Using Amdahl's Law In Practice

You cannot accurately predict serial portion (F)
– At best we can explain why the system is slow

Amdahl's law does not set an upper limit on processors
– The most powerful supercomputer "K" has 500,000 cores

 It assumes the amount of data remains the same
– Usually data grows as utilization does
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Little's Law

A better law for modeling real systems is Little's Law
– The long-term average number of customers in a stable system L is 

equal to the long-term average effective arrival rate, λ, multiplied by 
the average time a customer spends in the system, W
• L = λW

– Throughput is the inverse of service time

27



Multi-threaded Performance and Scalability

Little's Law

 If your service time is 1ms and you have one server, then 
the maximum throughput is 1000 transactions per second
– To increase throughput, add more servers or decrease service time

Good paper showing how the law can be used in practice
– http://ie.technion.ac.il/serveng/Lectures/Little.pdf
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Practical Examples Of Little's Law

 In a store, the limiting factor is usually the cashiers
– Years ago, Aldi in Germany increased the speed of the cashiers by 

making them memorize all the article codes

– They increased throughput by speeding up their cashiers

– They also limited the number of different types of articles
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Threading And Little's Law

A synchronized section only lets one thread in at a time
– λ = L/W

– L is 1, since the code is synchronized

– W is however long it takes to acquire the lock, call the critical 
section, release the lock again

– If W is 20ms, our maximum throughput is 1/0.02 = 50 per second

 It does not matter how many CPUs are in the system, we 
are restricted by Little!
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Costs Introduced By Threads

Performance and Scalability
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Costs Introduced By Threads

Single-threaded programs do not have to synchronize, 
context switch or use locks to protect data

 Threads can offer performance improvements, but there is 
a cost
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Context Switching

When we have more runnable threads than CPUs, the 
operating system will need to do a context switch
– The thread is swapped out, together with call stack and related data

– Another thread is swapped in
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Context Switching Costs Thousands Of Cycles

On Mac OS X it took on average of 3400 clock cycles
– Thousands sounds like a lot, but it was only 0.001% of performance!

– We should not let the context switch happen unnaturally often

Cost does not only come from the actual context switch, 
but also the related events
– The cache might need to be filled with new data

– Locking and unlocking might be causing the context switch
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Memory Synchronization

 Java uses memory barriers to ensure that fields are 
flushed and caches invalidated
– We use volatile and synchronized to place memory barriers

– Memory barriers slow us down

– They also limit how our code can be optimized
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Deaf Piano Tuning Association

 Tuning involves measurement
– There is a blind piano tuning association

• But no deaf piano tuning association
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Uncontended Locks Optimized

Uncontended locks can be optimized away by HotSpot
– Escape Analysis sees that object never escapes from code block

• The object can then be constructed on the stack or in the registers
• Locking can be removed automatically
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Lesson:
 Don't Worry About 
Uncontended Locks

38

http://codemotion.es/talks#t998
http://codemotion.es/talks#t998


Multi-threaded Performance and Scalability

Spinning Before Actual Blocking

CPU spinning for a bit before actual locking
– -XX:+UseSpinning turns on spinning (default off)

– -XX:PreBlockSpin=20 spin count for maximum spin iterations before 
entering operating system thread synchronization code (default 10)

Remember to measure and check that this is helping
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Reducing Lock Contention

Performance and Scalability
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Reducing Lock Contention

 The biggest threat to scalability is the exclusive lock
– Amdahl's Law shows that even a small section of serial code will 

limit the amount of speedup we can achieve

– And with Little's Law L=λW, the serial section always has L=1
• Thus λ=1/W

Our aim would need to be to reduce contended locks
– But of course ensuring that the code is still safe

41

Safety First
Safety First

And measure!
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How To Reduce Lock Contention

We have three main ways to reduce contention
– Reduce the duration that locks are held

– Reduce frequency with which locks are requested

– Replace exclusive locks with non-locking thread-safe mechanisms
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Narrowing Lock Scope ("Get In, Get Out")

We should always hold locks for as short as possible
– Our performance is limited by how long we hold the locks

• If the lock is held for 2 ms, throughput is maximum of 500 tx/s
• If it is held for only 1ms, throughput can increase to 1000 tx/s
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AttributeStore With A Long Critical Section

We are locking the entire matching method, even the 
regular expression pattern matching
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@ThreadSafe
public class AttributeStore {
  @GuardedBy("this")
  private final Map<String, String> attributes = 
    new HashMap<>();
  public synchronized boolean userLocationMatches(
      String name, String regexp) {
    String key = "users." + name + ".location";
    String location = attributes.get(key);
    if (location == null)
      return false;
    else
      return Pattern.matches(regexp, location);
  }
}
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A Better Way To Write "userLocationMatches"

 Faster is to lock only the portion that is necessary
– In addition, we are encapsulating the lock by using a private field
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public boolean userLocationMatches(
    String name, String regexp) {
  String key = "users." + name + ".location";
  String location;
  synchronized (attributes) {
    location = attributes.get(key);
  }
  if (location == null)
    return false;
  else
    return Pattern.matches(regexp, location);
}
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Or Use A ConcurrentHashMap

 The ConcurrentHashMap is non-blocking on reads
– The serial section is reduced to just a memory barrier via volatile
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@ThreadSafe
public class EvenBetterAttributeStore {
  @GuardedBy("this")
  private final Map<String, String> attributes =
      new ConcurrentHashMap<>();

  public boolean userLocationMatches(
      String name, String regexp) {
    String key = "users." + name + ".location";
    String location = attributes.get(key);
    if (location == null)
      return false;
    else
      return Pattern.matches(regexp, location);
  }
}
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AttributeStore Performance Comparisons

 Throughput for a million lookups on an 8-core machine
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1 2 3 4 5 6 7 8

Number of Threads

Normal
Better
EvenBetter



Multi-threaded Performance and Scalability

Reducing Lock Granularity

We can use lock splitting or lock striping to reduce 
contention

 Imagine if there was one lock for the entire application
– Completely unrelated parts of the program would be run in serial

 If a class has unrelated fields, we can use separate locks 

 In ServerStatus (next slide) we could use two locks to 
allow updating of users and queries at the same time
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ServerStatus Uses A Single Lock
@ThreadSafe
public class ServerStatus {
  @GuardedBy("this")
  private final Set<String> users = new TreeSet<>();
  @GuardedBy("this")
  private final Set<String> queries = new TreeSet<>();

  public synchronized void addUser(String user) { 
    users.add(user); 
  }
  public synchronized void addQuery(String query) { 
    queries.add(query); 
  }
  public synchronized void removeUser(String user) {
    users.remove(user); 
  }
  public synchronized void removeQuery(String query) {
    queries.remove(query);
  }
}
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ServerStatus Using Two Locks To Split Locking
@ThreadSafe
public class ServerStatus {
  @GuardedBy("users")
  private final Set<String> users = new TreeSet<>();
  @GuardedBy("queries")
  private final Set<String> queries = new TreeSet<>();

  public void addUser(String user) { 
    synchronized(users) { users.add(user); }
  }
  public void addQuery(String query) { 
    synchronized(queries) { queries.add(query); }
  }
  public void removeUser(String user) {
    synchronized(users) { users.remove(user); }
  }
  public void removeQuery(String query) {
    synchronized(queries) { queries.remove(query); }
  }
}
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CopyOnWriteArraySet Can Help To Avoid Locking

We might also
be able to use
a thread-safe
collection like
CopyOnWrite
if the queries
exceed the 
modifications
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@ThreadSafe
public class ServerStatus {
  private final Set<String> users = 
    new CopyOnWriteArraySet<>();
  private final Set<String> queries = 
    new CopyOnWriteArraySet<>();

  public void addUser(String user) { 
    users.add(user);
  }
  public void addQuery(String query) { 
    queries.add(query);
  }
  public void removeUser(String user) {
    users.remove(user);
  }
  public void removeQuery(String query) {
    queries.remove(query);
  }
}
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Lock Striping

We can decrease the probability of contention by splitting 
our data structures into many pieces

ConcurrentHashMap contains an array of sub-maps
– The concurrency level constructor parameter specifies how many 

segments we want to have inside the map
• Should be the number of threads that need concurrent access
• Concurrency level increases memory usage.  For an empty map:

– Note that ConcurrentHashMap in Java 8 will probably work with a 
tree structure of segments
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Concurrency Level Bytes
2 480

16 (default) 2272
256 34912
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Avoiding Hot Fields

Even a small portion of serial code will stop scalability

 For example, ConcurrentLinkedQueue does not maintain 
the number of elements inside
– Doing so would introduce a "hot" field

– We would not be able to add and remove elements at the same time

– Instead, every time we ask for size() it counts the elements

– It is optimized for the most common cases: add() and remove()
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ConcurrentLinkedQueue With Hot Field

Our HotConcurrentLinkedQueue introduces a hot field 
that caches the number of elements
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public class HotConcurrentLinkedQueue<E> 
    extends ConcurrentLinkedQueue<E> {
  private final AtomicInteger elements = new AtomicInteger();
  public boolean offer(E e) {
    boolean success = super.offer(e);
    if (success) elements.incrementAndGet();
    return success;
  }
  public E poll() {
    E e = super.poll();
    if (e != null) elements.decrementAndGet();
    return e;
  }
  public int size() {
    return elements.get();
  }
}
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Performance Of ConcurrentLinkedQueues

 Throughput of the two queues on an 8-core system
– Note that throughput is terrible for multi-core access, but the queue

      with the hot field is consistently worse
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1 2 3 4 5 6 7

Number of Threads

ConcurrentLinkedQueue
HotConcurrentLinkedQueue
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Alternatives To Exclusive Locks

We can use more scalable alternatives to exclusive locks
– ReadWriteLock allows several threads to read at the same time but 

only for one to write

– Some of the concurrent collections allow better scalability
• They typically use a combination of volatile and compare-and-set

– Immutable objects reduce the need for locking

– Atomic fields provide volatile access and compare-and-set

Contended fields based on compare-and-set can have 
worse performance due to too many retries
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Unix "vmstat"

Busy system

Quiet system
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procs  -----------memory---------- -swap- --io-- --system-- ----cpu----
 r  b  swpd    free   buff   cache  si so bi  bo   in    cs us sy id wa
 3  0     0 2666092 223300 4388744   0  0  0  68 1506 56459 24  2 74  0
 3  0     0 2644168 223300 4388744   0  0  0   8 1298 61687 31  2 68  0
 3  0     0 2643668 223300 4388744   0  0  0   0 1296 60977 25  1 73  0
 4  0     0 2644064 223300 4388744   0  0  0  12 1311 59997 27  2 71  0
 2  0     0 2643660 223300 4388748   0  0  0   8 1423 68424 25  2 73  0
 4  0     0 2643876 223300 4388748   0  0  0   0 1555 65415 26  2 72  0
 3  0     0 2620896 223308 4388748   0  0  0 132 1349 56320 31  2 67  0

procs -----------memory---------- -swap- --io-- --system-- ----cpu-----
 r  b swpd    free   buff  cache   si so bi  bo   in    cs us sy  id wa
 0  0    0 2661188 223524 4388964   0  0  0   0  228   212  0  0 100  0
 0  0    0 2660800 223524 4388968   0  0  0   0  135   141  0  0 100  0
 0  0    0 2660676 223524 4388968   0  0  0   0   83    83  0  0 100  0
 0  0    0 2660676 223524 4388968   0  0  0   0  103    91  0  0 100  0
 0  0    0 2660676 223524 4388968   0  0  0   0  170   157  0  0 100  0
 0  0    0 2660676 223524 4388968   0  0  0   0  111   112  0  0 100  0
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Unix "vmstat" 

 The context switching (system/cs) is very large, telling us 
that threads are not using their time quantum
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procs  -----------memory---------- -swap- --io-- --system-- ----cpu----
 r  b  swpd    free   buff   cache  si so bi  bo   in    cs us sy id wa
 3  0     0 2666092 223300 4388744   0  0  0  68 1506 56459 24  2 74  0
 3  0     0 2644168 223300 4388744   0  0  0   8 1298 61687 31  2 68  0
 3  0     0 2643668 223300 4388744   0  0  0   0 1296 60977 25  1 73  0
 4  0     0 2644064 223300 4388744   0  0  0  12 1311 59997 27  2 71  0
 2  0     0 2643660 223300 4388748   0  0  0   8 1423 68424 25  2 73  0
 4  0     0 2643876 223300 4388748   0  0  0   0 1555 65415 26  2 72  0
 3  0     0 2620896 223308 4388748   0  0  0 132 1349 56320 31  2 67  0
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Why Might The CPUs Not Be Fully Loaded?

 There are several reasons the CPUs might not get hot
– Insufficient load

• The test data set might be too small
• Our test script might not be adequately loading the system
• Our test environment might not be powerful enough

– I/O bound
• If the application is disk-bound you will see a lot of disk io
• Windows: perfmon or taskmgr (with the correct columns selected)
• Unix: iostat or vmstat

– Externally bound
• We might be waiting for the database or a web service
• Use a sampling profiler to see what our threads are waiting for

– Lock contention - more next slide
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How To Find "Hot Locks"

Profiling
– A profiling tool like YourKit shows the most contended locks

 Thread dumps
– A cheap way of finding "hot locks" is to take several thread dumps

– A heavily contended lock will usually show up several times

60

"pool-9-thread-2" prio=10 runnable
   java.lang.Thread.State: RUNNABLE
        at SynchronizedOuter.someMethod
        - locked <0x00000007555c3de8> 
        at SynchronizedInnerOuterTest$2.callMethod
        at SynchronizedInnerOuterTest$2.run
"pool-9-thread-1" prio=10 waiting for monitor entry 
   java.lang.Thread.State: BLOCKED 
        at SynchronizedOuter.someMethod
        - locked <0x00000007555c3de8> 
        at SynchronizedInnerOuterTest$2.callMethod
        at SynchronizedInnerOuterTest$2.run
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HotSpot Options For Lock Performance 

We can control how HotSpot does locking
– -XX:+DoEscapeAnalysis

• Elides locks on objects that cannot escape

– -XX:+EliminateLocks
• Does lock coarsening using roach motel semantics

– -XX:+UseBiasedLocking
• Locks are assumed to be given to a single thread

–This might have to be undone if another thread needs the lock
• Additional flags control how quickly biased locking is applied

–   -XX:BiasedLockingStartupDelay= 4000
–   -XX:BiasedLockingBulkRebiasThreshold=20
–   -XX:BiasedLockingBulkRevokeThreshold=40
–   -XX:BiasedLockingDecayTime=25000
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Conclusion

Performance and Scalability
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Conclusion

 Traditional optimizations try to speed up a single method
• Change complexity or cache previous results

– In multi-threading, this can introduce bottlenecks and "hot fields"

– Algorithms might also be more difficult to parallelize

Measure your performance
– Only optimize contended locks

– Use good tooling to discover the hottest locks

Narrow your lock scope ("Get in, Get out")
– Do not write 2000 line long synchronized methods

– Little and Amdahl will love you for it

 Learn how concurrency works in Java
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Multi-threaded Performance 
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